
Alan Carle
Rice University

Department of Computational & Applied Mathematics

Mike Fagan
Rice University

Department of Computer Science

Lawrence L. Green
NASA Langley Research Center

Multidisciplinary Optimization Branch

Preliminary Results from thePreliminary Results from the
Application of AutomatedApplication of Automated Adjoint Adjoint

Code Generation to CFL3DCode Generation to CFL3D

OutlineOutline

The Goal - Derivatives for Shape Optimization

Automatic Differentiation

Shape Optimization and the Iterated Reverse Mode

MYGRID and CFL3D

Results

Conclusions

Future Work

Thanks to NASA, NSF/CRPC and Boeing
for supporting this effort.

The GoalThe Goal

Compute derivatives for aerodynamic shape optimization fast,
accurately, and with little human-intervention.

Develop the ADJIFOR automatic adjoint code generation tool for
Fortran 77 and apply to a production CFD code.

Demonstrate on model problems (Rice) and simple aerodynamic
shape optimization problems (Langley).

Transition to industry design for use on design problems.

Automatic DifferentiationAutomatic Differentiation

AD is a chain-rule based technique for computing
derivatives of functions described by computer
programs.

Given F: Rn È Rm which takes T(F) time and M(F) memory to evaluate, and
matrices R: n x p and L: q x m ...

AD forward mode computes JF * R using time O(p * T(F)) and memory
O(p * M(F)) by computing the gradient of each intermediate value during a
forward execution of the function code. Good for small p and large m.

AD reverse mode computes L * JF using time O(q * T(F)) and memory
O(T(F) + q * M(F)) by computing adjoints of each intermediate value
during a reverse execution of the function code. Very good for q = 1,
and large n.

The Forward ModeThe Forward Mode

Associate a “gradient” g_ with every program variable and apply
the rules of differential calculus.

s = f(v,w) Ð g_s += ds/dv * g_v + ds/dw * g_w

t := 1.0
do i = 1, n

if (x(i) > 0) then
 t := t*x(i)

endif
endif

g_t:=0.0
t:=1.0
do i = 1, n

if (x(i) > 0) then
g_t:= x(i) * g_t + t *g_x(i)
t := t*x(i)

endif
endif

Initializing g_x(i) = ei Ð g_t = dt/dx(1:n).

Ð

The Reverse ModeThe Reverse Mode
Associate an adjoint α with every program variable and apply the
following rule to the inverted program:

 s = f(v,w) Ð α_v = α_v + ds/dv * α_s
α_w = α_w + ds/dw * α_s;
α_s = 0

LOG t
t = 1.0
do i = 1, n

jump(i) = x(i) > 0
if (jump(i)) then

LOG t
tmp = t * x(i)

 t = tmp
endif

enddo

do i = n, 1, -1
if (jump(i)) then

α_tmp = a_t; α_t = 0.0
UNLOG t
α_x(i) = α_x(i) + t * α_tmp
α_t = α_t + x(i) * α_tmp
α_tmp = 0.0

endif
enddo
UNLOG t

Step 1: Forward Computation Step 2: Adjoint Computation
α_t = 1.0,all other α_*=0

The Canonical Shape OptimizationThe Canonical Shape Optimization
ProblemProblem

G - grid generator

S - flow field stepping function

F - objective function

B - shape parameters
X - grid
Q - flow field

V - objective function value

X = G(B)
Q = Q0
Do until Q “is converged”

Q = S(Q, X)
Enddo
V = F(Q,X)

We assume that the only derivatives we need are dV/dB.

How to compute How to compute dVdV/dB/dB

Let n be the number of times the stepping function S is
executed, and apply the chain rule to get:

dV/dB = L JF JSn … JS1 JG R

L and R are block matrices that identify the dependent and
independent variables.

All derivatives are wrt to all program variables in the
canonical order: shape parameters B, grid X, flow field Q,
and objective value V.

grid generation
objective function iterating stepping

function

...

This is correct, but infeasible due to
logging requirements of the reverse mode.

Reverse Mode CodeReverse Mode Code CouplingCoupling

a_V = 1.0

X = G(B) a_B = a_G(B,a_X)

Q1 = S1(Q0,X)

...

Qn = Sn(Qn-1,X)

V = F(Qn, X) a_Qn, a_X = a_F(a_V, Qn, X)

a_Q0 ,a_X =
a_S1(a_Q1, a_X, Q0, X)

 ...

a_Qn-1,a_X =
a_Sn(a_Qn, a_X, Qn-1, X)

The Iterated Reverse Mode (IRM) -The Iterated Reverse Mode (IRM) -
AA better way to compute better way to compute dVdV/dB/dB

If Q* = Sn(Q*, X) then

dV/dB = L JF JSn … JS1 JG R

= L JF JSn … JSn JSn-1 … JS1 JG R
Implicit function theorem ensures
that JSn-1 … JS1 is a fixed point
of JSn

 = L JF JSn … JSn JG R
Contractive mapping theorem
ensures that a fixed point of
JSn can be computed by raising
JSn to successive powers.

Adjoint code must log
G, Sn, …, S1, and F.

Adjoint code must log
G, Sn, and F, only.

Caveats…

IRM CodeIRM Code CouplingCoupling

X = G(B) a_B = a_G(B,a_X)

Q1 = S1(Q0,X)

...

Qn = Sn(Qn-1,X)

V = F(Qn, X) a_Qn, a_X = a_F(a_V, Qn, X)

a_Qn,a_X =
a_Sn(a_Qn, a_X, Qn, X)

until
done

a_V = 1.0

Geometry and GridGeometry and Grid Generation Generation

MYGRID wing grid generator

Simple, algebraic, used for ADIFOR and ADJIFOR studies

Defines 3-D wings by set of wing sections, 8 DV per section (xle,
yle, zle, crd, cmx, xcm, thk, tws)

Generates single-block grids

SPLITTER

Single-block grid split into multiple-block grid by code written by
Biedron (NASA LaRC) Splits CFL3D input file as well!

Test cases

11 wing sections for total of 88 DV

volume grid sizes: 17x5x5, 33x9x9, 65x17x17, 129 x 65 x 33,

split into 1, 2, 4 and 8 zones

Computational FluidComputational Fluid Dynamics Dynamics

CFL3D

Code by Thomas, Rumsey and Biedron of NASA LaRC

Solves Euler/Navier-Stokes equations in convervation form

Numerous grid, solver, and convergence acceleration options

Sequential (CFL3D 5.0) and MPI parallel (CFL3D 4.1) code
versions

Objective Function - ratio of lift-to-drag

Test case

steady, inviscid, transonic flow around 3-D wing using point-
mached grids without multigrid (M = .84, alpha = 3.06°)

Generating derivative codeGenerating derivative code
with ADJIFORwith ADJIFOR

1. Prepare source code.

CFL3D had been processed with ADIFOR before, so no
preparation was required.

2. Process with ADJIFOR.
 108 minutes to generate code on SPARC Ultra 1 Wkstn

54k lines of orig. code → 212k lines of fwd and rev. code

3. Modify the CFL3D stepping loop to form the IRM.

We log 4 steps of S to disk and iterate the 3rd step. We reduce
I/O costs by reading the log for each of the adjoint steps of S
into memory before executing the step.

4. Compile and link with ADJIFOR-MPI.lib and Tape.lib.

5. Connect MYGRID, SPLITTER, CFL3D, a_CFL3D, a_SPLITTER
and a_MYGRID.

6. Run and verify answers against finite differences and ADIFOR.

Wing

Section

ADIFOR

Forward Mode

ADJIFOR

Iterated Reverse
Mode

1 -9.3596682272D-02 -9.3596521007D-02

2 -0.14369275653618 -0.14369243579322

3 -0.14565042805518 -0.14565008124860

4 -0.14780920646490 -0.14780883618091

5 -0.15016909176536 -0.15016870059014

6 -0.20168090120663 -0.20168033692085

7 -0.15104420505533 -0.15104381205916

8 -0.13700349641320 -0.13700314053909

9 0.14102086061985 -0.14102054023426

10 -0.16309629767528 -0.16309601114465

11 -8.2278444748D-02 -8.2278045874D-02

Derivatives of V wrt tws.Derivatives of V wrt tws.
CFL3D 5.0.CFL3D 5.0.

Wing

Section

ADIFOR

Forward Mode

ADJIFOR

Iterated Reverse
Mode

1 -8.9783175395E-02 -8.9783304818E-02

2 -0.13777493172478 -0.13777513263480

3 -0.14033316309455 -0.14033340058874

4 -0.14268876834394 -0.14268902700298

5 -0.14484174747294 -0.14484201187753

6 -0.19469374919372 -0.19469415020925

7 -0.14544334149336 -0.14544361023223

8 -0.13203643206894 -0.13203667493141

9 -0.13562460240379 -0.13562481525497

10 -0.15620785249790 -0.15620803120294

11 -2.2707098520E-02 -2.2707403366E-02

Derivatives of V Derivatives of V wrtwrt tws tws..
CFL3DCFL3D 4.1. 4.1.

33 x 9 x 9 65 x 17 x 17

zones 1 2 4 8 1 2 4 8

Function Time 141 107 88 71 1385 1070 682 336

Iterated Reverse
Mode Time 1447 870 625 426 11697 7606 4634 2568

Ratio of Iterated
Reverse Mode

to Function
Time

10.2 8.13 7.10 6.00 8.45 7.10 6.79 7.64

Timing comparisons for CFL3D 4.1Timing comparisons for CFL3D 4.1
onon the IBM SP. the IBM SP.

Tests used either 1 or 2 “4-way SMP nodes.”

 Timings
(seconds)

Ratio to
Function

Function 132 1

One-sided FD 117E+2 89

Forward Mode 530E+2 402

Iterated Reverse
Mode

146E+1 11.1

Timings comparisons for CFL3D 5.0 onTimings comparisons for CFL3D 5.0 on
the IBM SP.the IBM SP.

Test Case 33 x 9 x 9 65 x 17 x 17

zones 1 2 4 8 1 2 4 8

pts 2673 1377 765 425 18785 9537 5049 2673

IRM Dyn Mem 21M 11M 6M 3.4M 150M 75M 40M 21M

IRM Disk 84M 44M 25M 14M 601M 304M 165M 90M

IRM Dyn Mem
(bytes/pt) 7776 7745 7875 7965 7885 7824 7923 7950

IRM Disk
(bytes/pt) 31598 31683 32518 33918 31969 31907 32610 33659

Storage comparisons for CFL3D 4.1 on theStorage comparisons for CFL3D 4.1 on the
IBM SMP (per compute node).IBM SMP (per compute node).

Does it scale?Does it scale?
These estimates suggest that
we could run a 400,000 grid
point problem without multigrid,
real*8, on 32 procs, each
having 128 Mbytes memory
and 400 Mbytes disk.

L. Green has run a 129x65x33
case, with multigrid, real*8, on
32 procs of the NAS Origin 2K.

dyn. mem. → 167M per proc
 disk → 646M per proc
 T(Adj)/T(F) → 15

Required
Dynamic
Memory

(bytes/pt)

Required
Disk

 (bytes/pt)

No multigrid,
real*8

8000 32000

No multigrid,
real*4 4000 16000

Multigrid,
real *8 16000 + … 64000 + …

Multigrid,
real*4

8000 + … 32000 + …

ConclusionsConclusions

We have demonstrated that ADJIFOR-generated code for MYGRID
and CFL3D produces

correct derivatives,

at a cost ranging from 7 to 21 function evaluations
independent of the number of shape parameters, and,

with minimal human effort.

Although ADJIFOR-generated code uses extensive amounts of
memory and disk, the requirements are consistent with the
resources available on today’s parallel hardware.

Future WorkFuture Work

Full Navier-Stokes including all turbulence models , and other
advanced CFL3D features

Reduce memory requirements of generated derivative code
through improved program analysis - linearity analysis,
recomputation of function values

Performance tuning of generated derivative code - goal is
O(Adj)/O(F) = 5

Release of ADJIFOR automatic adjoint code generator to public - if
interested, contact carle@rice.edu.

